
1

Simplify your Application Testing

STUGRM#10:
“Fuzzing für Tester: Effizient und einfach

sichere Software entwickeln”

2

Brief introduction

Alexander Weise
Vice President

Sales specialist and strategic
thinker with experience in the

security industry

Code Intelligence
GmbH

Vision - Easier access to modern
software testing techniques for

everyone

www.code-intelligence.com

https://www.linkedin.com/in/aweise/

3

Digitalization comes with growing pains 3 weeks of
heise.de news

4

Software Bugs
leading to critical vulnerabilities
costing 1.7 Trillion USD¹ for Top 606 Software Defects

[1] https://www.tricentis.com/software-fail-watch/

What do all these stories have in common?

https://www.tricentis.com/software-fail-watch/

5

Why are bugs that expensive?

System TestingArchitecture
Design

Production /
Post-Release

Stage at which a bug is found

C
o

st
 t

o
 fi

x
a

b
u

g

1 X

10 X

100 X

1.000 X

10.000 X

Acceptance
Testing

Development /
Unit Testing

6

Market trends triggering different coping strategies

from academic
to everyone

Toolbox

Knowledge

from human to
AI-assisted

from serial to
integrated (CI)

ProcessesSecurity Testing Market Trends

● Internet of Things

● Web and mobile applications / Customer data

● AI based solutions

● Advanced persistent threats evolving

● Adoption of open source security applications

● Deployment of third-party applications

● Government mandates and regulatory compliances

Automation &
Cultural Changes

9

Core of Our Technology: AI-Assisted Fuzzing with Feedback Loop

Predicted
Mutations

Image Parser

Click image for animation

coverage information,
executed paths, program states

AFL introduced feedback-based fuzzing in academia: not
only using randomize inputs but adding smart algorithms
generating inputs increasing code coverage significantly

With modern fuzzing, over 16,000 bugs have been

discovered in Google Chrome and 11,000 bugs in 160

open-source projects1

Until today fuzzing could only be used by experts. Therefore,

we developed CI Fuzz that is both technologically advanced

(combination of AFL, libFuzzer, honggfuzz and our custom

solution) while easy-to-use for developers

Modern Fuzzing uses instrumentation for feedback to smartly mutate inputs to detect bugs and vulnerabilities

2015

2019

2020

History of Modern FuzzingExample: Fuzzing an image parser application

More about modern fuzzing here.

https://www.code-intelligence.com/technology
https://www.zdnet.com/article/google-weve-open-sourced-clusterfuzz-tool-that-found-16000-bugs-in-chrome/
http://bit.ly/fuzzing-technology

10

Market trends triggering different coping strategies

Automation &
Cultural Changes

from academic
to everyone

Toolbox

Knowledge

from human to
AI-assisted

from serial to
integrated (CI)

ProcessesSecurity Testing Market Trends

● Internet of Things

● Web and mobile applications / Customer data

● AI based solutions

● Advanced persistent threats evolving

● Adoption of open source security applications

● Deployment of third-party applications

● Government mandates and regulatory compliances

11

Application security testing toolbox: Different approaches

AI

1. Manual Testing

● Manual revision and examination of the application code

● Used by security experts with special security tools

2. Static Application Security Testing (SAST)

● Analysis of application source code, byte code and binaries for coding and design conditions

● Code is not executed during test

3. Dynamic & Interactive Application Security Testing (D&IAST)

● Test during code execution detects vulnerabilities and reduces false positives to nearly zero

● Analysis of output from fuzzing process & continuous use as input for subsequent test runs

4. Feedback-based Application Security Testing (FAST)

● Software under test is fed with inputs, which are purposefully mutated during testing

● Fuzzer gets feedback about the code covered during execution

automated pattern recognition

automated code execution + AI-assisted feedback

human effort

automated code execution

12

Challenges in Early Software Security Testing Wasting Time and Nerves

Unit / Integration /
System Testing

Dynamic Testing
(DAST / IAST)

Static Code Analysis
(SAST)

enormous overhead in manual effort
covering mostly functional testing

slow and expensive due to enormous
manual effort

not covering security testing properly

enormous amount of false positives
and high amount of overseen bugs

usability issues due to false positives

various bugs uncovered too late in
the process due to false positives

either requires too much manual work
or doesn’t achieve proper code

coverage

still require enormous manual effort
to integrate properly

very limited code coverage leading to
missing bugs

hard to understand

13

There is Hope: Smart Fuzzing Superior in Bug Discovery

Vulnerabilities and bugs found automatically even in professional environments

○ Google (August 2019): >14,000 bugs found in 200 oss projects

○ Google (October 2019) : >16,000 bugs in Google Chrome with fuzzing

BUT: Practical Limitations

○ Hard to integrate in existing development environments

○ Tooling from fuzzing experts for experts

1: https://github.com/google/oss-fuzz
2: https://opensource.googleblog.com/2019/02/open-sourcing-clusterfuzz.html

https://github.com/google/oss-fuzz
https://opensource.googleblog.com/2019/02/open-sourcing-clusterfuzz.html

14

Effortless / Scalable Highest Code Coverage
(Validation)

CI Fuzz Testing Platform Enables Effortless Software Security + Stability

● No initial inputs required →
auto deduction of types

● No changes to existing build
and development processes

● Easy interface definition
● Almost no false positives due

to actual execution

● Never leave your IDE (setup,
stacktraces, load erroneous
inputs into debugger +
setting breakpoints)

● Agnostic CI/CD integration

● Intuitive reporting

● Code coverage visualization

● Most common web backend
languages

○ JVM (Java, Kotlin…), Go

● Most common embedded
device / IoT languages

○ C/C++, Rust

● White-box fuzzing allows
coverage maximization
based on source code

● Structure-aware input
generation covering large
parts of the business logic

● Protocol-based fuzzing with
auto detection (stateful)

● Smart combination of OSS
fuzzing engines, e.g., AFL or
libFuzzer

● Sophisticated bug and
vulnerability detection
aiming for low false positives

● Smart combination of various
bug detection frameworks
e.g., Google Sanitizers, ZAP

● Most common CWEs
supported (incl. OWASP Top
10 and API Top 10)

Smart SDLC Orchestration
(Fast Deployments)

Smart Bug Detection

https://github.com/google/sanitizers
https://owasp.org/www-project-zap/

15

Finding Bugs Early Avoids Follow-up Costs / Reduces Time to Market

System
Testing

Architecture
Design

Production /
Post-Release

Stage at which a bug is found

Costs per bug

10

Acceptance
Testing

Development /
Unit Testing

100

1,000

10,000

100,000

 * The “rule of ten” is well-founded by the results of several studies in Japan, the USA and Great Britain, which dealt with the causes of
product and quality defects.

16

Testing of Web Backends in Logistics

● 12 highly critical vulnerabilities and >50 bugs leading to unknown errors

● Drastically reduced implementation costs and testing effort

● Information leakage checks not performed but available from May on

17

Testing of an Intrusion Detection System

● 12 critical vulnerabilities (CVEs)

● Already using OSS Fuzz (libfuzzer + AFL)

● Some bugs found by our network protocol fuzzer

Sponsored By

18

Code Intelligence GmbH
Rheinwerkallee 6
53227 Bonn

Alexander Weise
+49 170 / 5473 061
weise@code-intelligence.de
www.code-intelligence.de

Thank you for your attendance!

